

Operational Programme Competitiveness

Extreme Light Infrastructure – Nuclear Physics (ELI-NP) – Phase II Project co-financed by the European Regional Development Fund

Ultra-intense laser and gamma beam systems at ELI-NP

Prof T Tajima's 70th Birthday Symposium UC Irvine, Jan. 26, 2018

Extreme Light Infrastructure: Nuclear Physics at Bucharest Romania

Outline of My Talk

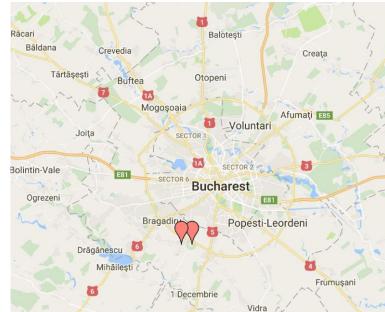
- Introduction
- Team Structure
- High Power Laser System
 Gamma Beam System
- Proposed Experiments
- Nuclear Photonics 2018
- Summary

Extreme Light Infrastructure: ELI ?

- Three laser labos are being constructed with 300 MEuro each.
- Those are planned in Romania, Czeco, and Hungary.
- Each has its own characteritics.

Hungary/ELI-ALPS

Romania/ELI-NP


Czech/ELI-Beamlines

We are located in Bucharest.

Introduction

Laser System with Highest Focused Intensity

- The wavelength, pulse width, energy, and beam diameter are 820 nm, 25 fsec, 250 J, and 50 cm.
- Focused laser intensity may reach 10^{23} W/cm².
- The laser light will accelerate electrons up to the speed of light.

Gamma Beam System with Highest Photon Number

The Gamma Beam photon energy is 19.5 MeV with 2 psec pulse width.

The number of photons may reach 10^9 photons/sec.

The gamma light will interact directly with nuclei for excitation and fission.

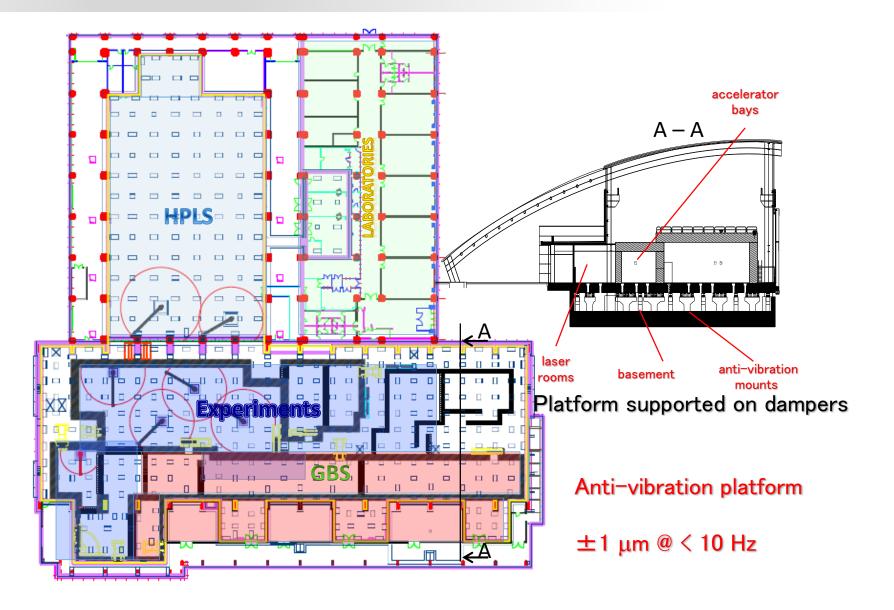
Laser system can be operated as stand alone or combined with Gamma beam system.

• Experiments under extreme conditions, so far not possible, can be conducted.

For example, we will perform

- Electron acceleration more than 10 GeV
- Nuclear fission and fusion
- Head-on collision of the laser and relativistic electron beam

Then these experiments will clarify


- History of the Universe
- Important Issues on nonlinear QED
- Isotope production for medical use

These achievements may lead to the Nobel prize and/or realistic outcomes for our society.

ELI–NP Building

Team Structure

General Director of IFIN/HH & Project Director Prof Dr Nicolai Victor Zamfir (US-Romania) Scientific Director Prof Dr Kazuo A Tanaka (US-Japan) Technical Director Dr Dan Gabriel Ghita (Rom)

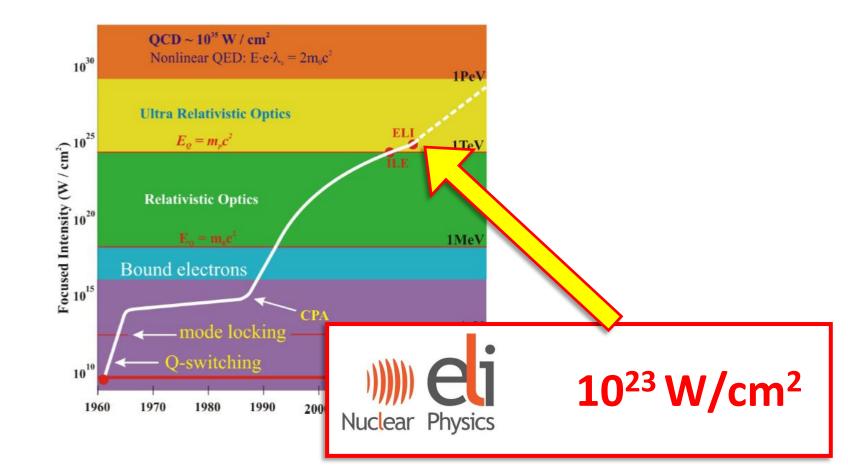
RA1 Laser Group	Dr Daniel Ursescu (Germany Rom)
RA2 Gamma Beam Grp.	Dr Calin Ur (Italy Rom)
RA3 Laser plasma nuclear physics Grp.	Dr Dan Stutman (US Rom)
RA4 Gamma Beam nuclear Physics Grp.	Dr Dimiter Balabanski (Bulgaria)
RA5 Combined Laser and Gamma Beam Grp.	Dr Ovidiu Tesileanu (Italy Rom)

Currently 130 members (20 Senior Sci., 60 Junior Sci. Rest Eng.)

Will boost up to 250 members.

High intensity laser system has started from these Muclear Physics

When they were at Laboratory for Laser Energetics, Univ. of Rochester in early 80's.

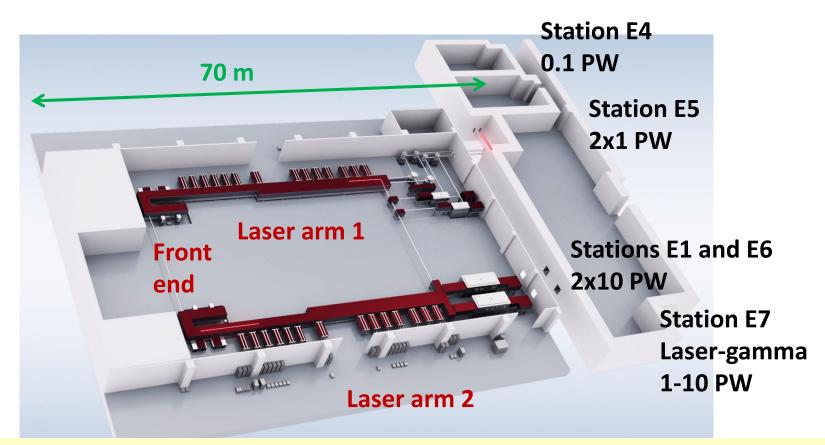

Dana Strickland University of Waterloo in Ontario, Canada

Gerard Mourou IZEST France

Intensity could reach 10²²-10²³ W/cm²

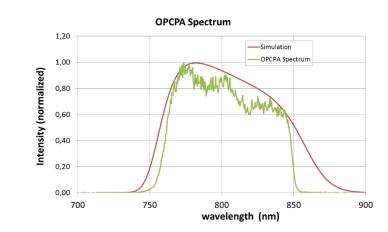
Laser system sits in a 70 x 70 m² clean room. Nuclear Physics

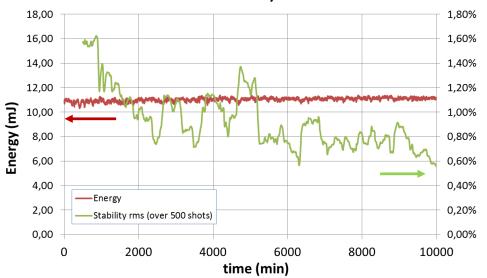
Installation in progress.


High Power Laser System

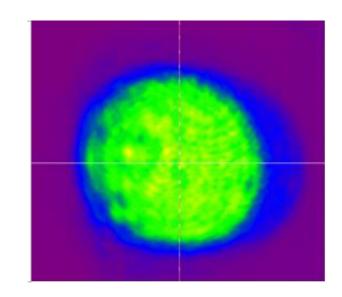
	min	max	unit
Energy/pulse	150	225	J
Central wavelength	814	825	nm
Spectral bandwidth (FWHM)	55	65	nm
Spectral bandwidth (at nearly zero level	120	130	nm
of intensity)			
Pulse duration (FWHM)	15	22.5	fs
FWHM beam diameter/Full aperture	450/550		mm
beam diameter	430,	mm	
Repetition rate	1 '		pulse
			/min
Strehl ratio	0.8	0.95	
Pointing stability	2	5	μrad
Beam height to the floor	1500	1510	mm

10 PW Laser System Layout

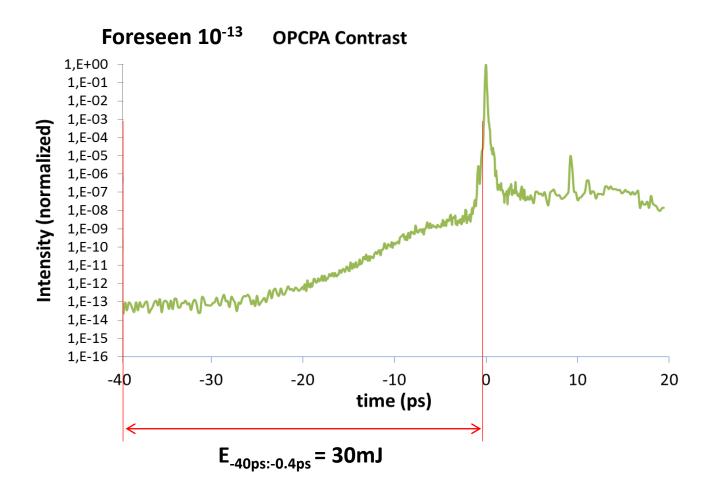

- High performance parameters : 250 J in 25fs, 0.9 Strehl ratio, <10⁻¹³ contrast
- Outputs: 2x 10 PW/min 2x 1 PW/1 Hz 2 x 0.1 PW/10 Hz



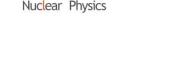
Thales at Elancourt France has reported the performance.

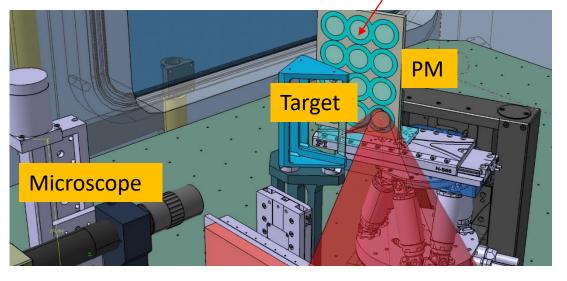

THALES

- Simulation and Results
 - Simulation result:
 - 16mJ
 - 77nm FWHM
 - Experimental result:
 - 11,6mJ (< 1,6% rms over 500 shots)
 - 67nm FWHM

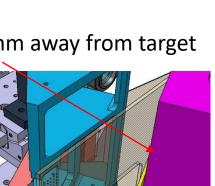


OPCPA Stability

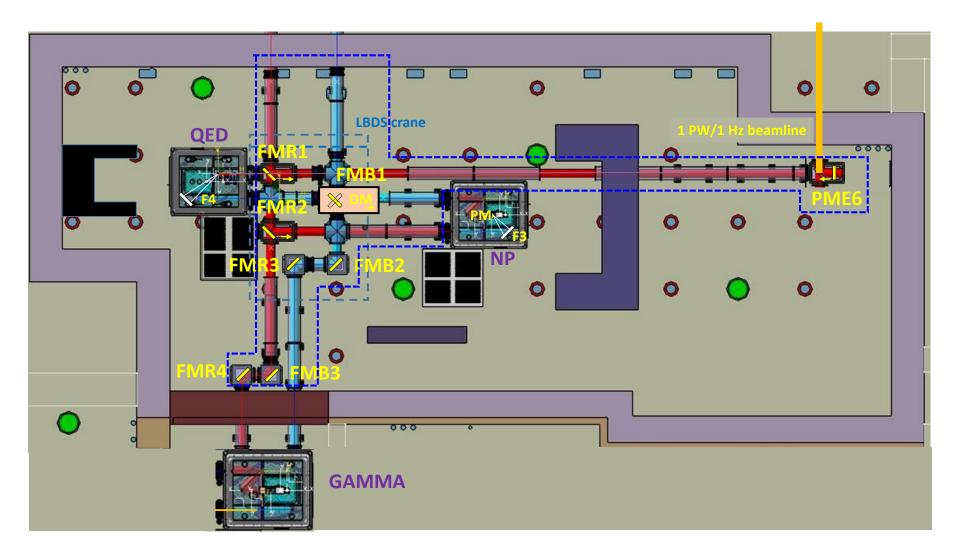

We expect to have 10¹³ contrast ratio.



Typically the peak intensity is set at $10^{15} - 10^{16}$ W/cm² on the plasma mirror.

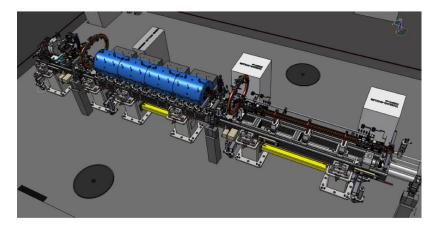

Back reflection? Plasma mirror is tested for optics protection.

Silver coated glass slab

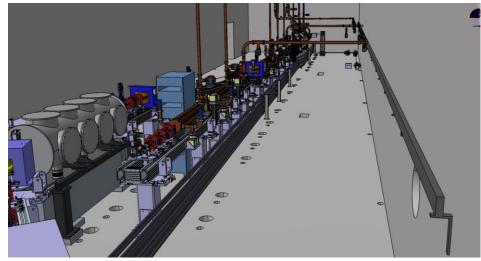


PM @ 50mm away from target

New 10 PW LBTS design



Gamma Beam System



RF Photoinjector

Components of Gamma Beam System

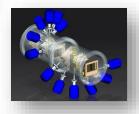
- 1) Warm electron RF Linac (innovative techniques)
- multi–bunch photogun (32 e⁻ microbunches of 250 pC @100 Hz RF)
 - 2 x S-band (22 MV/m) and 12 x C-band (33 MV/m) acc. structures
 - low emittance 0.2 0.6 mm⋅mrad
 - two acceleration stages (300 MeV and 720 MeV)

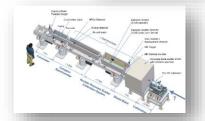
2) High average power, high quality J–class 100 Hz ps Collision Laser

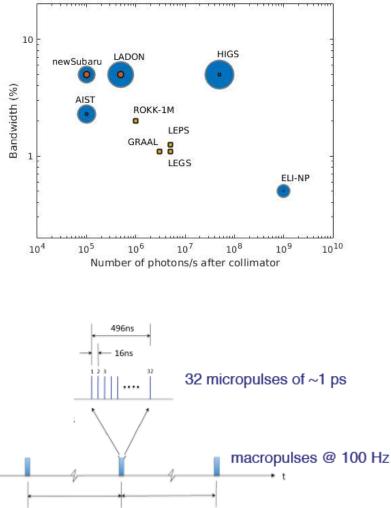

- state-of-the-art cryo-cooled Yb:YAG (200 mJ, 2.3 eV, 3.5 ps)
- two lasers (one for low– $E\gamma$ and both for high– $E\gamma$)
- 3) Laser circulation with μm and μrad and sub–ps alignment/synchronization
 - complex opto/mechanical system
 - two interaction points: $E\gamma < 3.5 \text{ MeV} \& E\gamma < 19.5 \text{ MeV}$

4) Gamma beam collimation system

- complex array of dual slits
- relative bandwidths < 5 x 10⁻³


5) Gamma beam diagnostic system


• beam optimization and characterization: energy, intensity, profile



GBS Specification

10ms

Parameter [units]	Value
Photon energy [MeV]	0.2 – 19.5
Spectral density [ph/s/eV]	> 0.5 x 10 ⁴
Bandwidth	< 0.5 %
# photons / shot FWHM bdw.	1.0 - 4.0·10 ⁵
# photons/sec FWHM bdw.	2.0 - 8.0 [.] 10 ⁸
Source rms size [µm]	10 - 30
Source rms divergence [µrad]	25 – 250
Peak brill. [N _{ph} /sec·mm ² mrad ^{2.} 0.1%]	10 ²² – 10 ²⁴
Radiation pulse length [ps]	0.7 – 1.5
Linear polarization	> 95 %
Macro repetition rate [Hz]	100
# of pulses per macropulse	>31
Pulse-to-pulse separation [ns]	16

10ms

Nuclear Physics

Commissioning Phase in 2019.

 We will focus on the characterization of each machines: 10PW laser and 19 MeV Gamma beam systems.

10 PW Laser System

- Laser intensity: 10²² W/cm²
- Electron acceleration > GeV
- Proton acceleration > 200 MeV

Gamma Beam System

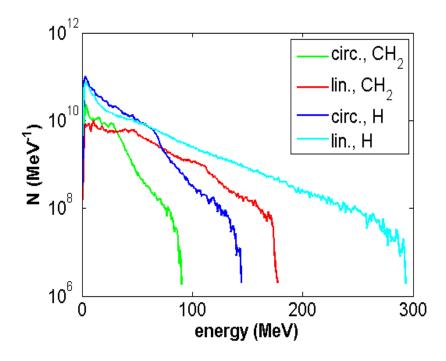
- Gamma photon energy calibration-Nuclear excitation 3.5 or 19.5 MeV
- Polarization > 95%

- Radiation Reaction: Classical to QED
- Photo Nuclear Reaction
- Ion Stopping & Excitation in Plasmas
- Fission Fusion Mechanism: r process ²³²Th
- Dark Matter Physics
- Vacuum Birefringence
- Photo-excitation of isomers

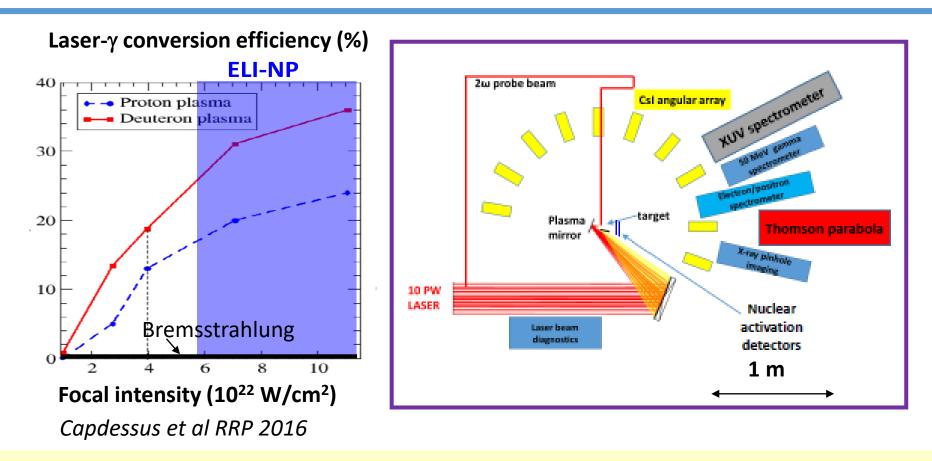
Etc.

Romanian Report in Physics 68 Supplimment 2016

New Horizons

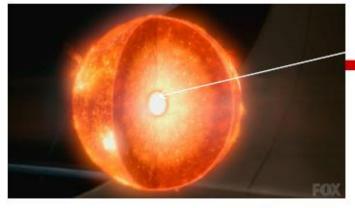

Fission-fusion Dark matter Radiation effect Nuclear Resonance Gamma Imaging Material Science Medical Isotopes

Astrophysics Astrophysics **Biology Nuclear Physics Nuclear Security Fusion Reactor Eng. Cancer Therapy**

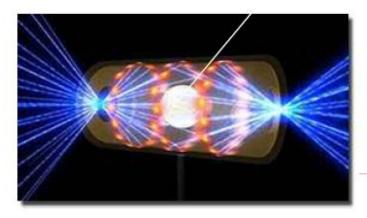


Predicted proton energy for LP and CP <u>I=10²²</u> W/cm2, 0.2 μ m CH₂ target (*Psikal et al J Phys Conf 2016*)

Commissioning experiment: Demonstration of extreme laser intensity through efficient laser- γ conversion



- **□** Tens of % gamma conversion efficiency in µm-thick plastic or dense gas targets
- GeV dense ion bunch acceleration using same setup with thinner targets
- Plasma mirror + baffle for protection against <u>laser back-reflection</u>, debris
- **We consider also membrane protection for the parabola**



Path to Extreme pressures by irradiation of aligned nanowire arrays

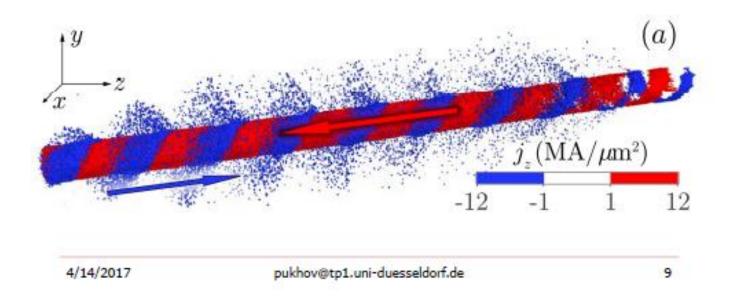
NIF Implosion 150 Gbar

Nanowire array plasma

Sun Core 240 Gbar

I = 1 x 10²² W cm⁻²

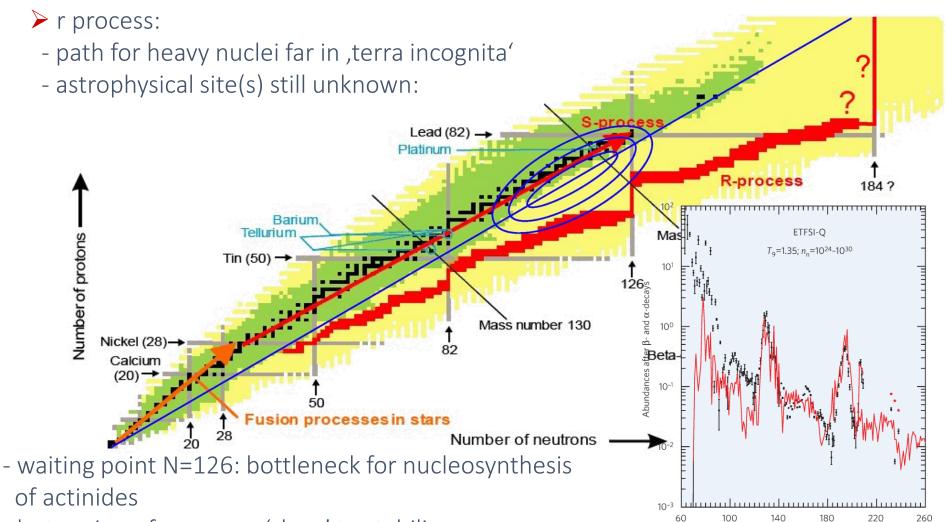
A Pukhov Heinrich Heine Univ., Germany



Kaymak et al, PRL 117, 035004 (2016)

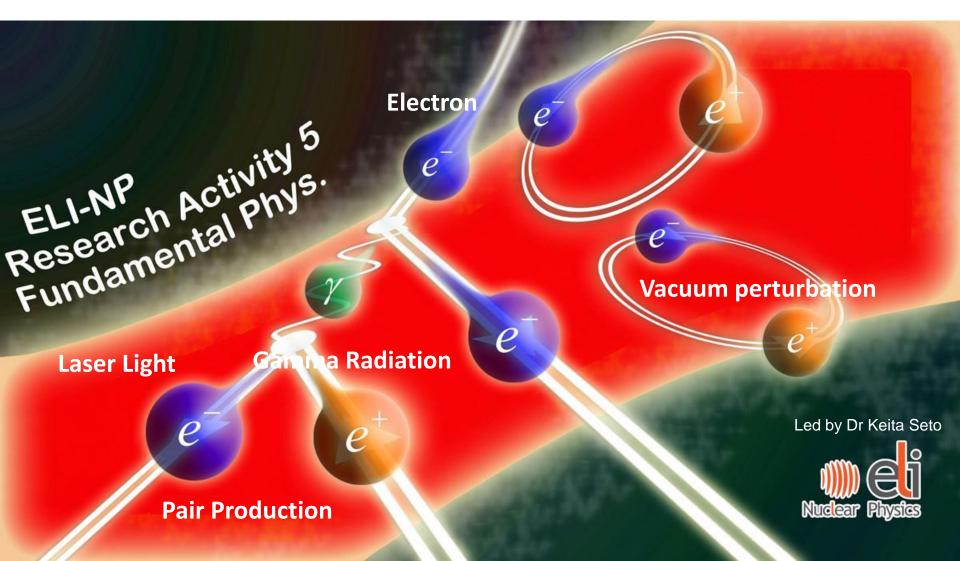
Nanoscale Ultradense Z -Pinch

Longitudinal current distribution


A Pukhov Heinrich Heine Univ., Germany

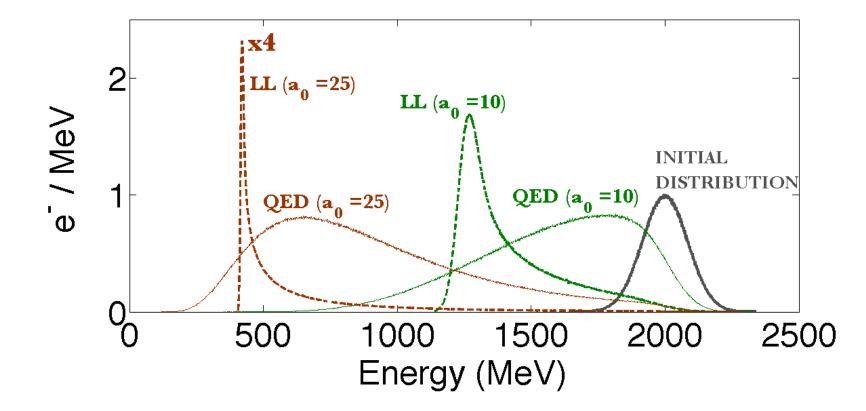
Astrophysical r process: waiting point N=126 -P. Thirolf (LMU)-

Mass number A



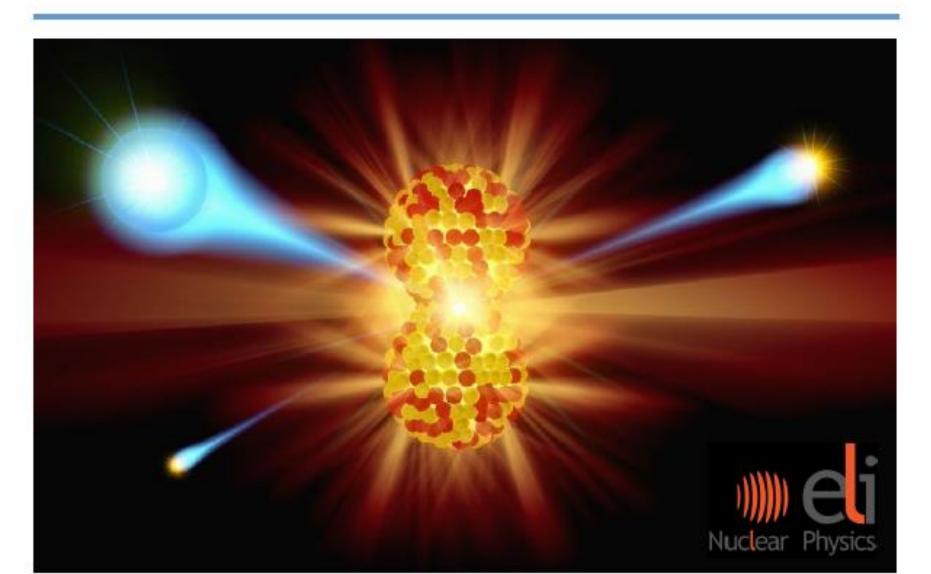
- last region of r process 'close' to stability

Nonlinear QED may be confirmed.



We may expect to see the drastic down shift in Electron spectrum.

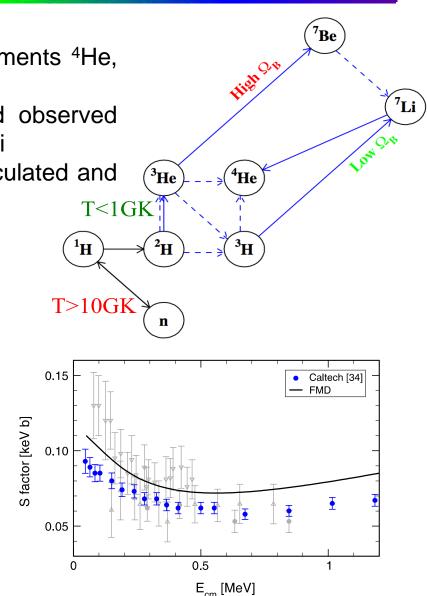
G Sarri, Queens' Univ. Belfast, UK.


Commissioning laser experiment schedule

Item/Year	2018 I	2018 II	2018 III	2018 IV	2019	2019 II	2019 III	2019 IV 2020 I	2020 II	2020 III	2020 IV
1 PW Exp.											
HPLS											
LBTS											
Vac Chambers											
Focus Optics]									
Opt/Target Set Up]									
Construction/Integration Diag	-]									
Installation of Diagnostics]]					
EMP Test		<u>.</u>				<u>.</u>					
		<u>.</u>			<u>.</u>	<u>.</u>					
Commissioning Period		<u>]</u>				<u>.</u>					
Laser Performance Exp.		ļ				<u></u>					
TNSA Exp.											
Day 1 Period											
Item/Year	2018	2018 II	2018 III	2018 IV	2019	2019 II	2019 III	2019 IV 2020 I	2020 II	2020 III	2020 IV
10 PW Exp.	.										
HPLS											
LBTS											
Vac Chambers											
Focus Optics											
Opt/Target Set Up											
Construction/Integration Diag					1	1					
Installation of Diagnostics		.,				.;			******		
Installation of Diagnostics											
EMP Test									*****		
EMP Test											
EMP Test Comissioning Period											
EMP Test											
EMP Test Comissioning Period Laser Gamma Conversion Exp. 200 MeV Proton Exp.											
EMP Test Comissioning Period Laser Gamma Conversion Exp. 200 MeV Proton Exp. Electron Acceleration Exp. 1											
EMP Test Comissioning Period Laser Gamma Conversion Exp. 200 MeV Proton Exp.											

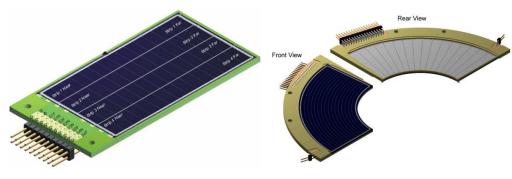
- Assumes 10 PW LBTS commissioning by Q3 2019
- I PW "Laser performance " experiment in Q4 2018
- IO PW experiments paced by LBTS delivery and installation to ~Q1 2020

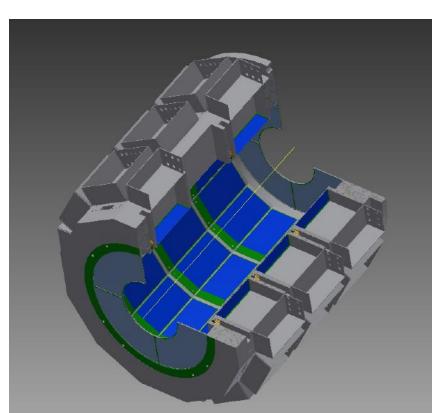
Gamma Beam System Experiments



Li problem : cosmological & theoretical

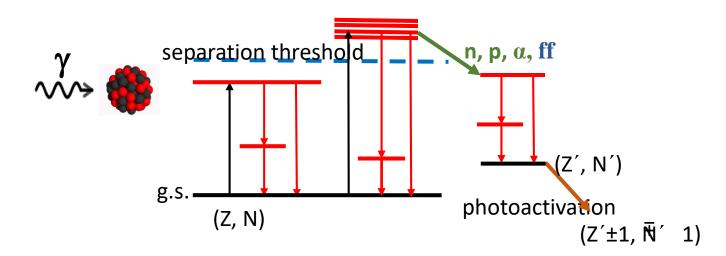
- BBN predicts the abundances of light elements ⁴He, D, ³He and ⁷Li
- good agreement between calculated and observed abundances for all light nuclei except for ⁷Li
- factor of 3-4 discrepancy between the calculated and the observed abundance of ⁷Li.


- Li-7 made by the mirror alpha capture reactions ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{3}\text{H}(\alpha,\gamma){}^{7}\text{Li}$
- theoretical models could provide the capture cross section at lower energies where experiments are not possible
- good agreement with measurements of ${}^{3}He(\alpha,\gamma){}^{7}Be$
- no agreement with measurements of Brune et al for ${}^{3}H(\alpha,\gamma){}^{7}Li$



from Neff et al, PRL 106, 042502 (2011)

- silicon array would make it possible to measure reactions on solid targets
- good energy resolution, almost 100% efficiency, small thresholds
- successfully designed and applied to nuclear astrophysics, e.g. ORRUBA
- array developed in collaboration with INFN-LNS, Catania
- \bullet 3 rings of 12 position sensitive X3 silicon-strip detectors (1000 $\mu m)$ by Micron
- \bullet 2 end cap detectors from 4 QQQ3 segmented detectors by Micron (300 $\mu m)$
- 512 channels readout with standard DAQ or GET electronics



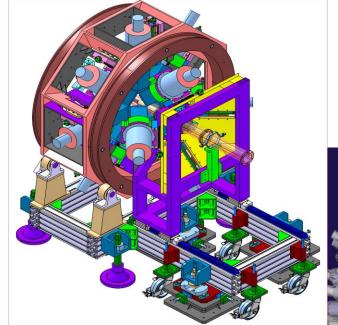
Experiments with high-brilliance gamma beams at ELI-NP

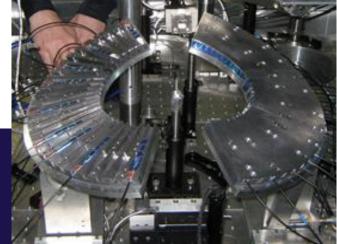
S. Gales et al., Phys. Scr. 91, 093004 (2016)

Nuclear Resonance Fluorescence (NRF) - Rom. Rep. Phys. 68, S483 (2016)

Giant/Pigmy Resonances (GANT) – Rom. Rep. Phys. 68, S539 (2016)

Photodisintegration (γ ,n), (γ ,p), (γ , α) – **Rom. Rep. Phys. 68, S699 (2016)**


Photofission (γ,ff) – Rom. Rep. Phys. 68, S621 (2016)


Applications – Rom. Rep. Phys. 68, S735 (2016), ibid 68, S799 (2016), ibid 68, S847 (2016)

Instrumentation for Physics

CsI array for angle resolved calorimetry

ELIADE array: 8 segmented HPGe Clover detectors with anti-Compton shields + 4 LaBr3 detectors

Gamma above neutron threshold (GANT)

Commissioning GBS experiment schedule

Item/Year	2018 I 2018 II 2018 III 2018 IV	/ 2019	2019 II 2019 II	I 2019 IV 2020 I	2020 II	2020 III 2020 IV
GBS I Components	Components Delivered					
GBS II Installation	Components Delivered					
GBS III Gamma Beams						
GBS IV Whole System						
System Alignment & Tuning						
Commissioning Exp.						Ī
Gamma Beam Delivery Diag.						
ELIGANT						
ELIADE NRF etc.						
Day 1 Exp.						

Actual Issues in Medical Isotope Production

Radioisotopes play a crucial role in nuclear medicine being used for the diagnosis and the treatment of ones of the most spread diseases: **the cancer and the cardiovascular disease**.

Medical radioisotopes have a limited lifetime, the production centers and the clinics should be placed relatively close one to each other.

The main medical radioisotopes are produced in nuclear reactors (ex.^{99m}Tc) the production could be affected by long maintenance periods, safety issues, etc. (see the Tc crisis from 2009).

An important part of medical radioisotopes are produced in cyclotrons

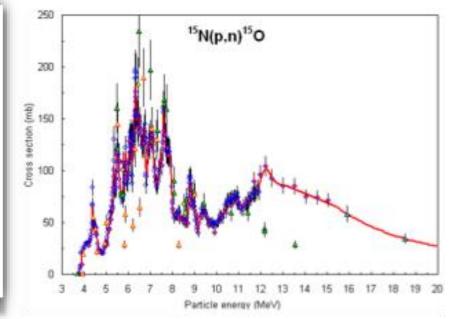
(ex. ¹¹C, ¹³N, ¹⁵O, ¹⁸F). Cyclotrons have big dimensions (and price) they could deserve a relatively small amount of hospitals concentrated in the big cities.

Alternative technologies are a necessity

Lasers provide a flexible way for reaching different characteristics of the accelerated particle beam (type of particle, energy spectrum, etc) based on different targets.

Laser-based particle beams have big density ranny activations/shot produced.

Acceleration field more intense than at accelerators and less shielding against radiation is needed is potential for size reducing.


The actual challenges are related to the "quality" of the proton beam, the repetition rate and the size minimization.

Many synergies with cyclotron- related isotope production and with laser-related physics experiments.

The Production Next Door

In laser based systems the shielding against radiation is needed only after laser-target interaction, in a much smaller volume/space than in the case of cyclotrons. Dessibility of producing short-live isotopes with small laser-based accelerators and deserving hospitals far away from the big cities.

Very short lived isotopes such as ¹⁵O (T_{1/2} = 122s !!) from ¹⁵N(p,n)¹⁵O are hardly accessible by conventional cyclotrons. They could be produced in the future with "table-top" lasers at dedicated production centers inside clinics.

Be part of this great adventure, join out team!

Acknowledgment

- A Pukhov Heinrich Heine University
- A Zilges University of Cologne
- M LaCognata INFN-LNS, Catania
- All the co-authors from Technical Design Report and Romanian Report in Physics 2016

- ELI-NP is under active implementation.
 10 PW laser beam will be available in June 2019.
 3 MeV and 19.5 MeV gamma beams in June 2019.
- Fission-fusion, Non linear QED, Plasma Physics, Dark Matter Physics, and Applications to Bio and Medical fields are to be tested.
- This experimental platforms can offer excellent opportunities to young scientists to test their original ideas.
- Your proposal is welcome. You can talk to me first.

Thank You Very Much for Your Listening

Project co-financed by the European Regional Development Fund

Document edited by Horia Hulubei National Institute for Research and Development in Physics and Nuclear Engineering Publication date of the document: August 2013

"The content of this document does not necessarily represent the official position of the European Union or of the Government of Romania"

For detailed information regarding the other programmes co-financed by the European Union please visit www.fonduri-ue.ro, www.ancs.ro, http://amposcce.minind.ro