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The electron energy scaling with laser intensity and energy efficiency is extrapolated from 1D
Particle-in-Cell Laser Wakefield Acceleration (LWFA) simulations near the critical density and com-
pared to conventional low density LWFA scaling laws. Conventional under-dense LWFA, relies on a
laser pulse length of approximately one plasma wavelength or less (λpulse ≈ λp) with a group veloc-
ity near the speed of light in order to excite electrostatic plasma waves (wakes) with a similar phase
velocity. Here, we examine the efficiency and maximum energy reached by electrons in traditional
laser wakefield acceleration as the density approaches the critical value. Near-critical density laser
wakefield has many potential applications including high dose radiation therapy.

I. INTRODUCTION

Conventional linear accelerator technology has a fun-
damental limit on the acceleration gradient due to elec-
tric breakdown of the materials used [1]. Thus, they
require sizeable installations and complex equipment to
achieve high energies [1]. Tajima and Dawson proposed
using high intensity pulsed laser (1018 W/cm2) to accel-
erate electrons with an accelerating gradient on the order
of GeV/cm [2]. Their paper launched the laser wakefield
acceleration (LWFA) branch of plasma physics which was
further aided by the advent of Chirped Pulse Amplif-
cation (CPA) [3]. In the long history of conventional
LWFA, the regime where the plasma density approaches
the critical density nc (discussed in section II) has not
been thoroughly explored.

Valenta et al. determined that electron densities of
roughly 0.1nc were necessary for high repetition rate, low
energy, short pulse lasers [4]. More recently, Nicks et al.
further explored how one can achieve bulk acceleration of
electrons near the critical density [5, 6]. In this paper we
will further explore the parameter space near critical den-
sity LWFA and compare it to conventional underdense
LWFA.

II. THEORY

To begin addressing this problem, we would first like
to investigate how the the maximum energy gain of an
electron, ∆E, scales with density, ne and laser intensity
a0 in the high density regime in both relativistic (a0 > 1)
and non-relativistic (a0 < 1) cases. Imagine a slab of
uniform plasma, into which we inject a linearly polarized
plane wave in the ẑ direction.

∗ A footnote to the article title

The force felt to first order by an electron due to the
laser is given by the Lorentz force:

F =
dvy
dt

=
qEy

mc
(1)

Through a Fourier transform, we can obtain the veloc-
ity of the electron (again to first order):

vy =
iqEy

mω0c
(2)

Thus the second order force, the ponderomotive force,
becomes clear:

Fp = q
Bzvy
c

=
q2Ey

mω0c
Bz =

q2E2
y

mω0c
= mω0ca

2
0 (3)

Where a0 is the intensity of the laser. In the relativistic
limit, Fp reduces to:

Fp = mω0ca0 (4)

The maximum energy gained by an electron from the
laser is given simply by integrating the pondermotive
force over half the plasma wavelength, such that:

∆E = (
πc

ωp
)Fwγ

2
ph (5)

where γph is the relativistic Lorentz factor. Therefore,
the maximum energy will scale quadratically or linearly,
depending on the strength of the laser pulse. The Lorentz
factor depends on the density as follows:

γph = (1− v2ph/c
2)−1/2 = (1− ω2

p/ω
2
0)

−1/2

≈ ω0/ωp =
√

ncr/ne

(6)
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FIG. 1: Fast Fourier Transform (FFT) of the (a)
transverse (Ey) and (b) longitudinal (Ex) electric field
in a 1D PIC simulation of highly underdense LWFA

where ω0 is the laser frequency, ncr is the critical den-
sity for the laser, and ne is the plasma density. This
implies ∆E has a dependence on the plasma density:

∆E ∝
√
ne (7)

The accuracy of this relationship is what we wish to
investigate.

We also wish to consider the efficiency of the laser at
accelerating electrons. We define the efficiency, η, as fol-
lows

η = Eplasma/∆Elaser (8)

FIG. 2: Phase space plot normalized to electron mass
and c on the left with the transverse (red) and

longitudinal (blue) electric fields for a simulation with
a0 = 1 and ne = 0.01× ncrit at 150 fs.

III. UNDERDENSE VS NEAR CRITICAL
DENSITY

Conventional LWFA relies on highly underdense
plasma such that the plasma density is much lower than
the critical density ne ≪ ncrit. Given the dispersion re-
lation [7]:

ω2 = k2c2 + ω2
pe (9)

Where ωpe =
√
4πnee2/me, one finds the phase veloc-

ity and group velocity to be :

vph = ω/k = c
ω√

ω2 − ω2
pe

(10)

vg =
∂ω

∂k
= c

√
ω2 − ω2

pe

ω
=

c

ω

√
1− ne/nc (11)

In an highly underdense plasma ω ≫ ωpe and both
the laser phase velocity and group velocity reduce to
vph ≈ vg ≈ c. This is shown in Fig. 1a where the Fast
Fourier Transform (FFT) of the transverse electric field
was taken over time and plotted with respect to the fre-
quency and wave number normalized to the plasma fre-
quency (ωp) and plasma wave number (kp). When the
laser’s pulse width is equivalent to half the plasma wave-
length: λpulse = 2πc/(2ωpe), then the laser’s high group
velocity is able to excite electrostatic (wake) waves with
a similar phase velocity via the ponderomotive force de-
scribed by the ponderomotive potential Φ = mc2

√
1 + a20

where a0 = eE0/mω0c is the normalized vector potential
of the laser, or rather the transverse quiver velocity of the
electron normalized to c. Here, E0,ω0 are the maximum
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FIG. 3: Fast Fourier Transform (FFT) of the (a)
transverse (Ey) and (b) longitudinal (Ex) electric field

in a 1D PIC simulation of LWFA near the critical
density

electric field and center frequency of the laser. A non-
linear effect do to the Lorentz force, the ponderomotive
force drives electrons in the longitudinal direction paral-
lel to the laser propagation. These electrons leave behind
a cavity of positive charge which creates an electrostatic
field polarization of magnitude:

Ep = mωpca0/e (12)

These polarized fields then oscillate at the plasma fre-
quency ωp and are referred to as wake waves. In other
words, for a laser frequency far above the plasma fre-
quency, the laser propagates through the plasma unim-
peded and is able to continually excite a robust train
of wake waves behind it with no group velocity but a
phase velocity near c as shown in Fig. 1b and Fig. 2
shows the phase space plot of that same simulation with
ne = 0.001 × ncrit. The high group velocity of the laser
and high phase velocity of the wake waves is an impor-
tant aspect of the conventional LWFA because they are
insulated from bulk thermal plasma instabilities where

(a)

(b)

FIG. 4: Phase space plot normalized to electron mass
and c on the left with the transverse (red) and

longitudinal (blue) electric fields for a simulation with
a0 = 1 and ne = 0.9× ncrit at 100 fs (a) and 700 fs (b).

the thermal speed of the plasma can be characterized
by vth =

√
T/m

Conventional LWFA then relies on electron injection
mechanisms to capture a small population of electrons
and accelerate them to high energies in the train of wake
waves. However, with the wake waves’ high phase veloc-
ity, far away from the bulk thermal velocity, the strength
of these wakes will have to grow large enough to be able
to trap electrons from the fringes of the thermal distribu-
tion. The trapping width velocity is described by O’Neil
[8]:

vtrap =
√
qE/mk (13)

Where E is the amplitude of the wake wave, k is its
wave number, q and m are the charge and mass of the
particle to be trapped in the wake wave. Thus, because
vph ≫ vth the wakes cannot functionally trap and accel-
erate electrons from the bulk thermal distribution. This
again reinforces that the laser and wakes are stable
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FIG. 5: The maximum electron energy (blue) 300 fs
after the laser has penetrated a plasma with

ne = 0.9× ncrit and laser to plasma energy efficiency
(red) η vs the normalized laser vector potential (a0).

FIG. 6: The maximum kinetic energy found in
simulations with respect to density and a0.

from thermal plasma instabilities and have long coher-
ence times.

In the limit at which the wake will begin to trap elec-
trons from the bulk thermal distribution then vtrap ∼
vphase ≈ c ≫ vth. Using Eq. (12) we find the amplitude
of the wake to be:

E = ETD =
mωpc

e
(14)

Also known as the Tajima Dawson field which is equiv-
alent to the cold relativistic wave breaking field.

At the near critical density limit, we expect the main
laser frequency to have vg ∼ 0. However, with the reso-
nant condition of λpulse = λp/2 this means that near the
critical density,

the laser pulse width will be single cycle or sub cy-
cle. Thus, the frequency spectrum of the laser pulse will

FIG. 7: The maximum efficiency (total particle energy
to total laser energy) found in simulations with respect

to density and a0.

be broad bandwidth and composed of higher and lower
frequencies than that of the main one.
The broad bandwidth means the laser pulse has fre-

quency components with a varying group velocity. This
is shown in FFT spectrum of Fig. 3a for a laser with a
subcycle pulse width travelling through a plasma density
of ne = 0.9×ncrit. The varying group velocities will then
cause the laser pulse to become ”chirped” such that the
higher frequencies race ahead of the the lower frequen-
cies in space causing the laser pulse to broaden. This is
shown in the plot 3a where the laser enters the plasma
and is quickly chirped. This is opposed to the a highly
underdense plasma case which allows the laser pulse to
propagate without much impedance.
The broad bandwidth of the laser pulse then excites

multiple electrostatic wakes at the plasma frequency (ωp)
but with different wave number values as shown in Fig.
3b. This is in contrast to the highly underdense case
where coherent wake waves of a single frequency and wave
number (ωp,kp) are excited, shown in Fig. 1b. Thus, for
the near critical density case, many low phase velocity
wake waves are excited which are closer to the bulk ther-
mal distribution. These low phase velocity waves are
then able to trap and accelerate low energy particles in
bulk as shown in Fig. 4b phase space plot.

IV. CONCLUSION

We confirmed ∆E scales quadratically then linear from
a0 < 1 to a0 > 1 as can be seen in Fig. 5. The efficiency
shows some interesting trends including having a min-
imum at the critical density, and a local maximum at
ne/ncrit ≈ 0.5. The local max is of interest, because
there is no explicit reason as to why a local max should
occur. Perhaps this may be caused from resonances with
harmonics of the plasma frequency. More data points to
enhance the resolution of the trends is needed to con-
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firm the values of the maximums and minimums of the
efficiency.

Fig. 6 shows the maximum kinetic energy found in
the PIC simulations with respect to density and a0. The
trend shows a steady decline in the maximum energy as
the plasma density approaches the critical density for all
a0 with a local minimum at ne ≈ 0.95× ncrit.
As a0 → ∞, the efficiency quickly becomes large, which

is evident in Fig. 7. It is also evident that as n → nc, the

efficiency η goes to zero. However, at densities near the
critical, the efficiency is consistently around 15% for all
a0 values which is also confirmed by Fig. 5. Additionally
there seems to be little laser-plasma interaction for low
intensities (a0 < 0.1) at low densities (ne < 0.1×ncrit). It
is generally clear that laser-driven wakefield acceleration
responds positively to an increase in laser intensity and
negatively to an increase in density.
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