next up previous
Next: Post-Analysis Up: Solution of the Black Previous: Conversion of the Black-Scholes

Green's Function Solution

We now use the Green's function for the Diffusion or Heat equation[4], which is the solution to that equation for a point (or delta function) source at point z' at time t'=0

 \begin{displaymath}G(z-z';t)=\frac{1}{\sqrt{4 \pi t'}}e^{-\frac{(z-z')^2}{4t'}}.
\end{displaymath} (19)

The verification of this Green's function solution is shown in Appendix A. The Green's function shows the Gaussian diffusion of the pointlike input with distance from the input (z-z') increasing as the square root of the time t', as in a random walk.

We can use the Green's function to write the solution for $\tilde{y}(z,t')$ in terms of summing over its input values at points z'on the boundary at the initial time t'=0

 
$\displaystyle \tilde{y}(z,t')=\int_{-\infty}^{\infty} dz'\tilde{y}(z',0)
\frac{1}{\sqrt{4\pi t'}} e^{-\frac{(z-z')^2}{4t'}}.$     (20)

Putting in the initial condtions at t'=0, where $\tilde{y}(z',0)$ vanishes for negative z', gives

 \begin{displaymath}\tilde{y}(z,t')=\frac{1}{\sqrt{4\pi t'}}
\int_{0}^{\infty} dz...
... 1 \right)
\frac{1}{\sqrt{4\pi t'}} e^{-\frac{(z-z')^2}{4t'}}.
\end{displaymath} (21)

To do the integral we change the variable to
 
q = $\displaystyle \frac{z'-z}{\sqrt{2t'}}, \quad {\rm and}$ (22)
dz' = $\displaystyle \sqrt{2t'} dq.$ (23)

The lower limit on the q integral is now

\begin{displaymath}-\frac{z}{\sqrt{2t'}}=-d2,
\end{displaymath} (24)

where substitution gives the dimensionless

 \begin{displaymath}d2= \frac{\ln{x/c}+(r-v^2/2)(t^*-t)}{v\sqrt{(t^*-t)}}.
\end{displaymath} (25)

In the first term we now complete the square to get a new variable

 \begin{displaymath}q' = q - \sqrt{2t'} \frac{v^2/2}{(r-v^2/2)}.
\end{displaymath} (26)

The new lower limit on q' in the first term is now -d1 where

 \begin{displaymath}d1 = \frac{\ln{x/c}+(r+v^2/2)(t^*-t)}{v\sqrt{(t^*-t)}}.
\end{displaymath} (27)

After completing the square on the first term, the exponent simplifies to

 \begin{displaymath}\ln{x/c}+r(t^*-t)-\frac{1}{2}q'^2.
\end{displaymath} (28)

Both integrals are now related to the Cumulative Distribution Function of the Normal Distribution

 \begin{displaymath}N(x) = \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^x e^{-\frac{1}{2}t^2}dt.
\end{displaymath} (29)

If we change t to -t in the above integral and invert the limits we get the form of our integrals

 \begin{displaymath}N(x) = \frac{1}{\sqrt{2 \pi}} \int_{-x}^{\infty} e^{-\frac{1}{2}t^2}dt.
\end{displaymath} (30)

We now have our solution for the canonical $\tilde{y}$

 \begin{displaymath}\tilde{y}(z,t') = c ( e^{\ln{(x/c)}+r(t^*-t)}N(d1)-N(d2) )
\end{displaymath} (31)

Finally, we use the facts that $\tilde{y} = \hat{y} = y$, and that $e^{\ln{(x/c)}}=x/c$, and the conversion

 \begin{displaymath}w(x,t)=\tilde{w}(u,t) = e^{-r(t^*-t)} y(u,t),
\end{displaymath} (32)

to get the Black-Scholes solution

 
w(x,t) = x N(d1)-c e-r(t*-t)N(d2). (33)


next up previous
Next: Post-Analysis Up: Solution of the Black Previous: Conversion of the Black-Scholes
Dennis Silverman
1999-05-20